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We propose a simple two-step within-groups estimator for limited dependent
variable models, which may include lags of the dependent variable, other
endogenous explanatory variables, and unobservable individual e®ects. The
models that we present are extensions of the random e®ects probit model of
Chamberlain (1984), and have application in the analysis of binary choice,
linear regression subject to censoring, and other models with endogenous
selectivity. The estimator is based on reduced form predictions of the latent
endogenous variables. We also show how to obtain, in one more step, chi-
squared test statistics of the overidentifying restrictions, and linear GMM
estimators that are asymptotically e±cient. (JEL C23)

1. Introduction

In this article we consider the problem of estimating a limited depen-
dent variable (LDV) model from panel data, which may include lags
of the dependent variable, other endogenous explanatory variables,
and unobservable individual e®ects. The models that we present are
extensions of the random e®ects probit model of Chamberlain (1984),
and have application in the analysis of binary choice, linear regression
subject to censoring, and models with endogenous selectivity.

An earlier version of this paper previously circulated under the title \Estimating
Dynamic Limited Dependent Variable Models from Panel Data with an Applica-
tion to Female Labour Supply", Nu±eld College, Oxford, February 1988. We are
grateful to two anonymous referees and the editor for helpful comments on this
work. All remaining errors are our own.
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We propose a simple within-groups estimator which uses reduced
form predicted values of the dependent variable. It can be regarded as
a member of Chamberlain's class of random e®ects minimum distance
estimators, and as such it is consistent and asymptotically normal for
a ¯xed number of periods in the absence of misspeci¯cation. It also
provides a convenient framework for the estimation of semiparametric
random e®ects models in which some of the distributional assump-
tions implicit in the basic models are relaxed. However, the within-
groups estimator is not asymptotically e±cient within the minimum
distance class, since it implicitly uses a non-optimal weighting ma-
trix. In this regard, we also show how to obtain, in one more step,
chi-squared test statistics of the overidentifying restrictions, and lin-
ear GMM estimators that are asymptotically e±cient.

In the models considered in this paper, variables are either endoge-
nous or exogenous. Lags of the dependent variable are treated as
endogenous variables, since we do not restrict the pattern of serial
correlation in the errors. Models which contain predetermined vari-
ables (through assumptions of absence of autocorrelation, or some
other form of sequential conditioning over time) are outside the scope
of the present paper.

The random e®ects models considered here are attractive because
they are su±ciently °exible to make it possible the estimation of
various nonlinear models of empirical interest subject to permanent
unobservable e®ects.1 The disadvantage is, of course, that they rely
on an explicit speci¯cation of the reduced form.

The paper is organized as follows. Section 2 presents the two-step
within-groups estimator for the basic model with only exogenous ex-
planatory variables. In addition, we show that the same idea can
be applied in the case of a binary choice model with time-series het-
eroskedasticity. Sections 3 and 4 extend the results, respectively,
to a dynamic speci¯cation and to endogenous explanatory variables.
Section 5 considers asymptotically e±cient linear GMM estimation

1Labeaga (1990, Ch. 4) applies some of the models and the two-step estimator
proposed in this paper to his empirical analysis of the demand for tobacco in Spain
using household unbalanced panel data.



estimating dynamic limited dependent variable models 143

and speci¯cation testing. Finally, Section 6 contains some concluding
remarks.

2. A within-groups estimator for random e®ects LDV
models

2.1. The model and the estimator

We begin by considering a static random e®ects LDV model of the
form

y¤it = x
0
it¯ + ´i + vit (t = 1; :::; T ; i = 1; :::;N) [1]

where xit is a k £ 1 vector of exogenous variables such that

E(vit j xi1; :::; xiT ; ´i) = 0

and ´i is an unobservable individual e®ect potentially correlated with
xit. y¤it is a latent dependent variable which is not directly ob-
servable. We observe instead yit which is some function of y¤it. In
the Tobit model yit = max(y¤it; 0) while in the binary choice model
yit = 1(y¤it > 0), where 1(A) is the indicator function of the event
A. In a generalized selectivity model yit = 1(Iit > 0)y¤it where Iit
is some stochastic index determining whether yit is zero or equal to
y¤it. The result of not observing y¤it is that the parameter vector in
its conditional mean, ¯, will not be identi¯ed in the absence of ad-
ditional assumptions concerning the conditional distribution of the
error terms. In an obvious notation, the T equations in model [1] can
be written as

y¤i=Xi¯ +´i¶+ vi (i = 1; :::;N) [2]

where ¶ is a T £ 1 vector of ones.

Following Chamberlain (1984), we parameterize the expectation of ´i
conditional on the values of the exogenous variables. Suppose that

E (´i j xi1; :::; xiT ) = ¸0 + ¸01xi1 + ::: + ¸0TxiT + ¸0¤ri [3]
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where ri is a vector of variables that includes nonlinear terms in the
xit's. Therefore, letting zi be the m £ 1 vector (m ¸ Tk) zi =
(x0i1:::x

0
iT r0i)

0, the reduced form of the model is given by

y¤i = ¦zi + "i (i = 1; :::;N): [4]

The estimators below will be sensitive to the speci¯cation of the con-
ditional distribution of ´i. Notice that the conditional expectation of
´i can be approximated to any degree by a polynomial expansion. We
would expect that a linear speci¯cation, possibly with the addition
of quadratic or cubic terms, may often provide a reasonably good
approximation. In any event, the reduced form [4] can be tested to
some extent against functional misspeci¯cation.

If we transform the variables in [2] into deviations from time means,
the ´i's are eliminated. Letting y+i = Qy¤i ; X+

i = QXi and v+i = Qvi,
where Q is the deviations from time means operator Q = IT ¡ ¶¶0=T :

y+i = X+
i ¯ + v+i :

If y¤i is directly observed, the OLS regression of y+i on X+
i gives us

the within-groups estimator of ¯. However, even if y¤i is not directly
observed, the following expression for the restrictions

X+
i ¯ = Q¦zi (i = 1; :::; N) [5]

implies that

¯ =

Ã
NX

i=1

X+0
i X+

i

!¡1 NX

i=1

X+0
i ¦zi: [6]

This suggests to estimate ¯ by replacing ¦ in [6] by a consistent esti-
mator b¦. That is, if we let byi be a consistent reduced form predictor
of y¤i ,

byi = b¦zi,

we consider as an estimator of ¯ the within-groups regression of byi
on Xi:

b̄ =

Ã
NX

i=1

X+0
i X+

i

!¡1 NX

i=1

X+0
i by+i [7]



estimating dynamic limited dependent variable models 145

where by+i = Qbyi.

If b¦ is a consistent and asymptotically normal estimator of ¦, then b̄
can easily be shown to be also consistent and asymptotically normal.
Subtracting ¯ from [7] we can write
ÃX

i

X+0
i X+

i

!
( b̄ ¡ ¯) =

X

i

X+0
i

³
by+i ¡ X+

i ¯
´

=
X

i

X+0
i (b¦ ¡ ¦)zi

or

b̄ ¡ ¯ =

ÃX

i

X+0
i X+

i

!¡1X

i

³
X+
i ­ zi

´0
vec(b¦ ¡ ¦). [8]

That is, since b̄ is linear in vec(b¦), provided the latter is asymptot-
ically normal, the asymptotic normality of the former follows from
Cramer's transformation theorem.2 Assuming that

p
Nvec(b¦ ¡ ¦) ea N(0; V ),

the asymptotic variance of b̄ can be consistently estimated as3

\AV AR( b̄) =

ÃX

i

X+0
i X+

i

!¡1
M 0 bV M

ÃX

i

X+0
i X+

i

!¡1
[9]

where M =
P
i

³
X+
i ­ zi

´
and bV is a consistent estimator of V .

Notice that if we evaluate expression [7] at the OLS regression coef-
¯cient matrix of yi on zi

e¦OLS =

ÃX

i

yiz
0
i

! ÃX

i

ziz
0
i

!¡1
,

we obtain the actual within-groups estimated coe±cients in the re-
gression of the observed endogenous variable yit on xit:

ē =

ÃX

i

X+0
i X+

i

!¡1X

i

X+0
i

e¦OLSzi =

ÃX

i

X+0
i X+

i

!¡1X

i

X+0
i yi.

2For any matrix A, vec(A) is obtained by stacking the rows of A.
3A[V AR( b̄) denotes a consistent estimate of the variance of the asymptotic

distribution of
p
N( b̄¡ ¯):
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In general, such estimator will not be consistent for ¯ because e¦OLS
is not a consistent estimate for ¦ in LDV models. The connection,
however, illustrates the fact that the ordinary within-groups estima-
tor can also be regarded as a random e®ects estimator of the type
given in [7].

2.2. Estimating the reduced form

We now turn to consider the problem of obtaining a consistent es-
timate b¦ and an estimate of its asymptotic variance matrix bV : For
this purpose, it is convenient to provide separate discussion for binary
choice, censored (or Tobit) regression, and models with selectivity.

Binary choice

In the binary choice model yit = 1(y¤it > 0): The simplest probit speci-
¯cation is based on the assumption that each of the errors of equation
[4] are independent of zi; and follow a normal distribution with a con-
stant variance "it j zi ~ N(0; ¾2): Using ¾2 = 1 as a normalization, we
then have that

Pr(yit = 1 j zi) = ©(¼0tzi)

where ©(:) is the N(0; 1) cdf and ¼t is the t-th row of ¦: Although the
components of "i will be correlated in general, separate ML probit
estimates of the ¼t for each period are consistent and asymptotically
normal.

A less restrictive probit model can be obtained allowing for time-series
heteroskedasticity (cf. Chamberlain, 1984, pp. 1270-1274). In such
case, we assume "it j zi ~ N(0; ¾2t ); so that Pr(yit = 1 j zi) = ©(¼¤0t zi)
with ¼¤t = ¼t=¾t: As before, some normalization must be chosen. For
example, using ¾21 = 1 as the normalization restriction, notice that
period by period probit estimates of the reduced form for t = 2; :::; T
will be consistent for ¼¤t but not for ¼t: However, it is still possible
to obtain a linear within-groups estimator for the probit model with
unequal variances based on reduced form estimates of the ¼¤t : Using
equation [5] we have

X+
i ¯ = Q¤¦¤zi [11]

where ¤ = diag(¾t): Letting dti be a T £1 vector with one in the t-th
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position and zero elsewhere, this can be written as4

W+
i ± = Qd1i(¼

¤0
1 zi) [12]

where ± = (¯0; ¾2; :::; ¾T )0;Wi = (Xi
... ¡ (¼¤02 zi)d2i

... :::
... ¡ (¼¤0T zi)dTi);

and W+
i = QWi:

An implication is that

± =

Ã
NX

i=1

W+0
i W+

i

!¡1 NX

i=1

W+0
i d1i(¼

¤0
1 zi). [13]

As before, this suggests estimating ± by replacing the ¼¤t in expression
[13] by their period-speci¯c probit estimates:

b± =

Ã
NX

i=1

cW+0
i

cW+
i

!¡1 NX

i=1

cW+0
i d1i(b¼¤01 zi) [14]

where cW+
i is as W+

i but using the estimated ¼¤t :

Notice that subtracting ± from [14] we can write

ÃX

i

cW+0
i

cW+
i

! ³
b± ¡ ±

´
=

X

i

cW+0
i Q

h
d1i

¡
b¼¤01 zi

¢ ¡ cWi±
i

=
X

i

cW+0
i

³
Q¤b¦¤zi ¡ Q¤¦¤zi

´

=
X

i

cW+0
i ¤

³
b¦¤ ¡ ¦¤

´
zi.

As a consequence, the equation error can be written as

p
N(b± ¡ ±) =

ÃX

i

cW+0
i

cW+
i

!¡1ÃX

i

cW+0
i ¤ ­ z0i

!p
Nvec

³
b¦¤ ¡ ¦¤

´

which suggests that again the consistency and asymptotic normality
of b± follows from the consistency and asymptotic normality of b¦¤:

4We are using the fact that ¤¦¤zi =
PT

t=1
¾t(¼

¤0
t zi)dti together with the

normalization ¾1 = 1.
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Finally, the binary choice model can be further generalized by relax-
ing the assumption of normality. Suppose that zi contains at least a
continuous element, and that "it j zi is distributed independent of zi
with a continuously di®erentiable unknown cdf Ft: Let now re-de¯ne
¼¤t = ¼t= k ¼t k exclusive of the constant term, which would be sub-
sumed in Ft: The semiparametric ML estimator of Klein and Spady
(1993) or the least-squares estimator of Ichimura (1993) can be used
to obtain consistent and asymptotically normal estimates of ¼¤t ; from
which estimates of ¯ and the relative scales k ¼t k can be developed
along the lines of the previous speci¯cation.

Censored (or Tobit) models

In the top censored regression model with known censoring point c
(as, for example, in the case of top-coded wages), we have yit =
min(y¤it; c): In this case, assuming that "it j zi ~ N(0; ¾2t ); separate
ML estimates of each of the T rows of ¦ are consistent and asymptot-
ically normal. Here the scale parameters ¾t are separately identi¯ed,
so the problem discussed above for probit models does not arise.
On the other hand, in view of the well known lack of robustness of
the Tobit estimator to heteroskedasticity and non-normality, the "i's
can alternatively be maintained to be just independent errors with
symmetric distributions. Under theses circumstances, each row of ¦
can be consistently estimated using, for example, the trimmed least
squares method proposed by Powell (1986).

Models with selectivity

In model with selectivity, where y¤it is a theoretical construct (for
example, \desired labour supply" or \reservation wages") as opposed
to an actual variable subject to censoring, the selection mechanism is
often found not to be governed by y¤it itself. Mroz (1987), for example,
presented evidence that this type of misspeci¯cation may have serious
consequences in a model of women's hours of work, and Blundell,
Ham and Meghir (1987) also rejected the Tobit model in favour of a
double hurdle speci¯cation (see Heckman, 1993, for a survey of the
literature). It is also possible to extend semiparametric methods to a
generalized sample selection model where yit = 1(Iit > 0)y¤it (see, for
example, Newey, Powell and Walker, 1990, and the references cited
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there). However, in the more standard context, if we specify an index
model of the form

Iit = °0tzi + ºit

and assume that ºit has a known parametric distribution, Heckman
(1979)'s lambda-corrected least squares estimators of separate rows
of ¦ are consistent.

2.3. Estimating the asymptotic variance matrix

Since for simplicity we restrict our attention to single equation esti-
mators of [4], for any particular choice of model and estimator, bV can
be calculated as follows. Let b¼0t be an estimate of the t-th row of ¦
de¯ned to minimize a di®erentiable criterion5

st =
NX

i=1

sit (yit; zi; ¼t)

(for example, st can represent (minus) a Tobit log-likelihood), so that

b¼ = vec(b¦) minimizes s(¼) =
TP
t=1

st. Subject to suitable regularity

conditions, a ¯rst order expansion of @s(b¼)=@¼ about the true value
of ¼ gives

Ã
¡ 1

N
diag

Ã
@2st

@¼t@¼0t

!!p
N(b¼¡¼) =

1p
N

NX

i=1

0
B@

@si1=@¼1
...

@siT=@¼T

1
CA+op(1)

which suggests an estimate bV of the form

bV = bH¡1 bª bH¡1 [15]

where bH = diag
¡
N¡1@2bst=@¼t@¼0t

¢
and bª = N¡1 NP

i=1

n
@bsit
@¼t

¢ @bsis@¼0s

o
.

5If b¼t is a trimmed least-squares or a least absolute deviations estimator then
the corresponding st is not di®erentiable. Nevertheless, the argument below
can be generalized to accommodate asymptotically normal estimators from non-
di®erentiable criteria.
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Turning to e±ciency issues, since b̄ will be usually based on an in-
e±cient reduced form prediction of y¤i ;

b̄ itself will be ine±cient.6

However, in general b̄ will also be ine±cient relative to the optimal
minimum distance estimator of ¯ based on b¦. This is because b̄ can
be regarded as a transformed minimum distance estimator which uses
a non-optimal norm (see the Appendix for the details). The advan-
tages of b̄ are that it is simpler to compute and has a straightforward
interpretation. Nevertheless, in Section 5 we show how to obtain
linear GMM estimates that are asymptotically e±cient relative to a
given b¦; and speci¯cation tests of the overidentifying restrictions.

3. A dynamic speci¯cation

The previous discussion has a straightforward extension to a dynamic
speci¯cation, since the within-groups estimator based on the same re-
duced form predictions of the dependent variable remains consistent
and asymptotically normal when lags of y¤it are amongst the explana-
tory variables in the equation.

The use of lags of y¤it as opposed to lags of yit is the natural choice
in models with censoring. For example, in analysing the dynamics of
wages with top coded wage data y¤it would typically be the process
of interest. In binary choice models the situation is rather di®erent,
however, since we would condition on past states by conditioning on
lags of yit. By conditioning on lags of y¤it instead, one is specifying
distributed lagged e®ects of past exogenous variables and past errors
on the current choices (see Heckman, 1981, for a description of these
two models). So both types of models are potentially interesting in
applications. Nevertheless, models which specify lags of yit would not
in general be compatible with linear reduced forms, as assumed here,
and therefore they are not considered in this paper (Arellano and
Carrasco, 1996, and Honor¶e and Kyriazidou, 1997, consider binary
choice models with state dependence and individual e®ects).

It should also be mentioned that in the models considered in this pa-

6Single equation estimates of ¦ will in general be ine±cient because they ig-
nore the dependence among the components of "i. Taking into account such
dependence would typically require the use of simulation based estimators (see
Hajivassiliou and Ruud, 1994, and references cited there).



estimating dynamic limited dependent variable models 151

per the serial correlation in vit is left unrestricted, and so we treat the
lags of y¤it as endogenous variables. If, for example, we assumed vit
to be serially independent, values of y¤it lagged two periods or more
would be predetermined variables in the equation in ¯rst di®erences.
Such situation would generate a type of identifying restrictions that
are distinct from those arising from the presence of strictly exoge-
nous variables analyzed here (Arellano and Bond, 1991, considered
linear models of this kind, and Arellano, Bover and Labeaga, 1997,
considered similar models subject to censoring).

We consider the equation

y¤it = ®y¤i(t¡1) + x0it¯ + ´i + vit = w¤0it± + ´i + vit [16]

where w¤it =

µ
y¤i(t¡1)

... x0it

¶0
and ± = (®

... ¯0)0. T time periods are

observed (T > 3), and as above we assume

E(´i j zi) = ¸0zi.

In addition we assume

E(y¤i1 j zi) = ¹0zi

so that the reduced form of the model is also given by [4].

The set of (T ¡ 1) equations in [16] can be written as

(I0 ¡ ®L)y¤i = Xi¯ + ´i¶ + vi [17]

where I0 is the (T ¡ 1) £ T trim operator I0 = (0
... IT¡1), L is

the (T ¡ 1) £ T lag operator L = (IT¡1
... 0), Xi is now of order

(T ¡1)£k, and ¶ and vi are (T ¡1)£1 vectors. Again the individual
e®ects can be eliminated transforming [17] into deviations from time
means. Letting Q now be the (T ¡ 1) within-groups operator and
B = I0 ¡ ®L we have

QBy¤i = X+
i ¯ + v+i .
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Comparing this equation with the reduced form equation [4] pre-
multiplied by QB, we can write the restrictions in the form

X+
i ¯ = QB¦zi (i = 1; :::; N). [18]

Letting Wi = (L¦zi
... Xi) and W+

i = QWi, this can be rewritten as

W+
i ± = QI0¦zi

which implies

± =

ÃX

i

W+0
i W+

i

!¡1X

i

W+0
i I0¦zi. [19]

Again this suggests estimating ± by replacing ¦ in [19] by a consistent
estimator b¦:

b± =

ÃX

i

cW+0
i

cW+
i

!¡1X

i

cW+0
i by+i0 [20]

where byi0 = I0 b¦zi; byi(¡1) = Lb¦zi and cWi = (byi(¡1)
... Xi), with the

(+) symbols denoting within-groups transformations.

Subtracting ± from [20] we can write
ÃX

i

cW+0
i

cW+
i

!
(b± ¡ ±) =

X

i

cW+0
i

³
by+i0 ¡ cW+

i ±
´

X

i

cW+0
i

³
QBbyi ¡ X+

i ¯
´

=
X

i

cW+0
i B(b¦ ¡ ¦)zi

or

b± ¡ ± =

ÃX

i

cW+0
i

cW+
i

!¡1X

i

³
cW+
i ­ zi

´0
(B ­ Im) vec(b¦ ¡ ¦). [21]

In this case, b± is not linear in b¦ but it is still true that
p

N(b± ¡ ±) =µP
i

W+0
i W+

i

¶¡1P
i

³
W+
i ­ zi

´0
(B ­ Im)

p
Nvec(b¦ ¡ ¦) + op(1)
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since p limN¡1P
i

³
cW+0
i

cW+
i ¡ W+0

i W+
i

´
= 0 and

p limN¡1P
i

h³
cW+
i ­ zi

´
¡

³
W+
i ­ zi

´i
= 0, so that the consistency

and asymptotic normality of b± follows from the consistency and asymp-
totic normality of b¦.

The asymptotic variance of b± can be consistenly estimated as

\AV AR(b±) =

ÃX

i

cW+0
i

cW+
i

!¡1
cM 0 bV ¤cM

ÃX

i

cW+0
i

cW+
i

!¡1
[22]

where cM =
P
i

³
cW+
i ­ zi

´
, bV ¤ =

³
bB ­ Im

´
bV

³
bB0 ­ Im

´
and bB =

I0 ¡ b®L:

Our previous comments on e±ciency also apply to b±. b± can be re-
garded as the minimizer of a transformed minimum distance criterion
which uses in general a non-optimal norm, and it is therefore inef-
¯cient relative to the optimal MD estimator of ± based on b¦ (see
Appendix).

The robustness of b± depends directly on the robustness of byit. In
particular, note that b± is in all cases robust to arbitrary forms of
serial correlation in the errors, since no restrictions are placed in the
covariances between the components of "i when estimating the rows
of ¦.

To summarize, note that the byit need only be calculated once, and
from then on they can be used as our data on the dependent variable
to estimating alternative models using the within-groups procedure.
Of course, the same is true for bV . Generally, an attractive feature of
methods of the Chamberlain type is a convenient separation between
speci¯cation searches at the level of the reduced form and at the level
of the structural equation. That is, functional form, distributional
and observability assumptions can be tested in the reduced form until
statistically satisfactory byit's are available, and concentrate on the
equation of interest thereafter.

4. Endogenous explanatory variables

Finally we consider a model with endogenous explanatory variables.
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For simplicity of presentation a static case with only one endogenous
explanatory variable is described. Let

y¤1it = °y¤2it + x0it¯ + ´i + vit = w¤0it± + ´i + vit [23]

where now w¤it =

µ
y¤2it

... x0it

¶0
and ± = (°

... ¯0)0. The endogenous

variable y¤2it may or may not be subject to some censoring rule. In
any event we asume

E(´i j zi) = ¸0zi

and
E(y¤2i j zi) = ¦2zi

where zi will now typically include some time-varying outside instru-
mental variables in addition to functions of the xit. The complete
reduced form is given by

y¤i = ¦zi + "i [24]

where y¤i =

µ
y¤

0
1i

... y¤02i

¶0
is 2T £ 1 and ¦ = (¦01

... ¦02)
0 is 2T £ m. The

set of T equations in [23] can be written as

µ
IT

... ¡ °IT

¶
y¤i = Xi¯ + ´i¶ + vi. [25]

In addition, multiplying through by Q to eliminate the individual

e®ects, and letting C =

µ
IT

... ¡ °IT

¶
:

QCy¤i = X+
i ¯ + v+i . [26]

Pre-multiplying [24] by QC, and comparing with [26], the restrictions
can be written as

X+
i ¯ = QC¦zi = Q¦1zi ¡ °Q¦2zi

or
W+
i ± = Q¦1zi
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where Wi =

µ
¦2zi

... Xi

¶
. Once again we estimate ± by using pre-

dicted values of y¤1i and y¤2i:

b± =

ÃX

i

cW+0
i

cW+
i

!¡1X

i

cW+0
i by+1i [27]

where cWi =

µ
by2i

... Xi

¶
, by2i = b¦2zi and by1i = b¦1zi. If y¤2it is directly

observable a valid choice for b¦2 is the OLS estimate of ¦2.

The discussion concerning the asymptotic distribution of b± in this
case, parallels the one for the dynamic model. Equation [22] remains
a valid expression for an estimate of the asymptotic variance of b± as
given in [27], except that now bV ¤ is de¯ned to be

bV ¤ =
³

bC ­ Im
´

bV
³

bC0 ­ Im
´

,

bV is an estimate of the 2Tm £ 2Tm variance matrix of vec(b¦), and

bC =

µ
IT

... ¡ b°IT

¶
.

5. GMM estimation and testing

The within-groups (WG) estimators presented in the previous sec-
tions are simple to calculate but, as we pointed out, are ine±cient
relative to the optimal minimum distance estimator of ¯ based on b¦:
Another disadvantage of the WG estimates is that it is not straight-
forward to obtain from them a chi-squared test statistic of the overi-
dentifying restrictions.7 Nevertheless, it is still possible to obtain
linear GMM asymptotically e±cient estimators (relative to b¦) and
test statistics in one more step, which do not require the speci¯cation
of the nonlinear constraints in ¦ or the estimation of the nuisance
parameters ¸.

Let us consider the following model that combines the previous spec-
i¯cations

y¤1it = °y¤2it + ®y¤1i(t¡1) + x0it¯ + ´i + vit = w¤0it± + ´i + vit [28]

7The results by Newey (1985) can, nevertheless, be applied to this context to
obtain an asymptotic chi-squared statistic.
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where now w¤it = (y¤2it
... y¤1i(t¡1)

... x0it)
0 and ± = (°

... ®
... ¯0)0.

Since the within-groups equation errors are uncorrelated to the con-
ditioning variables zi; we can write

E[Z 0iQ(y¤1i0 ¡ W ¤
i ±)] = 0 [29]

where Zi = (I ­ z0i); Q is the (T ¡ 1) within-groups operator, y¤1i0 =
(y¤1i2; :::; y

¤
1iT )0 and W ¤

i = (w¤i2; :::; w
¤
iT )0. Moreover, using the law of

iterated expectations

EfZ 0iQ[E(y¤1i0 j zi) ¡ E(W ¤
i j zi)±]g = 0 [30]

where E(W ¤
i j zi) = Wi = (I0¦2zi

... L¦1zi
... Xi) and E(y¤1i0 j zi) =

I0¦1zi:

This suggests to consider GMM estimators of ± based on the sample
orthogonality conditions:

bN(±) =
1

N

NX

i=1

Z 0i(by+1i0 ¡ cW+
i ±) [31]

where by1i0 = I0 b¦1zi; cWi = (by2i0
... by1i(¡1)

... Xi); by2i0 = Io b¦2zi; by1i(¡1)
= Lb¦1zi; and as before the (+) symbols denote within-groups trans-
formations.

A GMM estimator of ± based on bN(±) takes the form

e±A =

"ÃX

i

cW+0
i Zi

!
AN

ÃX

i

Z 0icW+
i

!#¡1ÃX

i

cW+0
i Zi

!
AN

ÃX

i

Z 0iby+1i0

!

[32]

where AN is a weighting matrix. With AN =

µP
i

Z0iZi

¶¡1
; e±A coin-

cides with the WG estimator:

b± =

ÃX

i

cW+0
i

cW+
i

!¡1X

i

cW+0
i by+1i0. [33]
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This numerical equivalence results from the fact that the columns in
cW+
i are linear combinations of those in Zi.

In order to obtain the large sample distribution of e±A for an arbitrary
AN ; we require an expression for the asymptotic variance of bN(±).
This follows from noticing that bN(±) can be expressed as a transfor-
mation of vec(b¦ ¡ ¦) (the Appendix contains a similar discussion,
but conducted in terms of transformed minimum distance criteria).
Speci¯cally, we have

bN(±) =
1

N

NX

i=1

(I ­ zi)(Q¡b¦zi ¡ QXi¯) [34]

where ¡ = (I0 ¡ ®L
... ¡ °I0):

Using the fact that QXi¯ = Q¡¦zi:

bN(±) =
1

N

NX

i=1

(I ­ zi)[Q¡(b¦ ¡ ¦)zi] [35]

= (Q ­ 1

N

X

i

ziz
0
i)(¡ ­ Im)vec(b¦ ¡ ¦):

Therefore,

p
NbN(±) ea N

³
0;QE(Z0iZi)V

¤E(Z0iZi)Q
0´

[36]

where Q = (Q ­ Im), and V ¤ = (¡ ­ Im)V (¡0 ­ Im):

Hence, a consistent estimate of the asymptotic variance of e±A is given
by

A [V AR(e±A) =

(M 0
zwANMzw)

¡1
M 0

zwAN

³
QMzz

bV ¤MzzQ
0´

ANMzw (M 0
zwANMzw)

¡1

[37]

where Mzw =
P
iZ

0
i
cW+
i ; Mzz =

P
iZ

0
iZi and bV ¤ is a consistent es-

timate of V ¤: When AN = M¡1
zz this expression blows down to the
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asymptotic variance estimates for each of the versions of model [28]
discussed in the previous sections.

In the previous discussion the within-groups operator Q can be re-
placed by any (T ¡ 2) £ (T ¡ 1) matrix K of rank (T ¡ 2) such that
K¶ = 0, since then Q = K0(KK 0)¡1K. Natural candidates are the
¯rst di®erence operator, the orthogonal deviations operator, or the
¯rst (T ¡ 2) rows of the within groups operator (cf. Arellano and
Bover, 1995). For any such K matrix, a generic GMM estimator
takes the form:

e±A =

"ÃX

i

cW 0
iK

0Zi

!
AN

ÃX

i

Z0
iK

cWi

!#¡1 ÃX

i

cW 0
iK

0Zi

!
AN

ÃX

i

Z0
iKby1i0

!
.

[38]

With AN = (
P
iZ

0
iKK 0Zi)

¡1, b±A is numerically the same as the
within-groups estimator [33]. The formula [37] remains a valid ex-

pression for A [V AR(e±A) provided we re-de¯ne Mzw and Q as Mzw =P
iZ

0
iK

cWi and Q = (K ­ Im):

We can now turn to consider e±cient estimation relative to b¦: From
standard GMM theory, we know that an optimal choice of AN is given
by a consistent estimate of the inverse of the covariance matrix of the
orthogonality conditions. Notice that if the within-groups operator
is used there are m redundant moment conditions in [31], with the
result that their covariance matrix is singular. It is still possible
to construct an optimal estimator using a generalized inverse of the
covariance matrix of the within-groups moments. This problem does
not arise, however, if a transformation K of the type discussed above
is used (e.g. ¯rst di®erences). An estimator e±V of the form given in
[38] with weighting matrix AN = bV ¡1

b where

bVb = (K ­ Im)Mzz
bV ¤Mzz(K

0 ­ Im) [39]

is asymptotically e±cient. Moreover, since the moments eliminated
by the transformation to vec(b¦¡¦) implicit in bN(±) are unrestricted,
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b±V is also asymptotically equivalent to the optimal minimum distance
estimator of b± based on b¦:

Finally, the minimized estimation criterion for b±V provides a test
statistic of the overidentifying restrictions that has an asymptotic
chi-squared distribution with [m(T ¡ 2) ¡ (k + 2)] degrees of freedom
under the null of lack of misspeci¯cation:

S = N

Ã
NX

i=1

bu0iK 0Zi

!
bV ¡1
b

Ã
NX

i=1

Z 0iKbui
!

ea Â2m(T¡2)¡(k+2) [40]

where bui = by1i0 ¡ cWi
b±V :

6. Concluding remarks

This paper has considered various extensions of the random e®ects
probit model of Chamberlain (1984), which include Tobit and other
sample selection models with dynamics in the latent endogenous vari-
able and endogenous regressors. We show that all these models can
be estimated using a relatively simple two-step within-group method
based on estimated reduced form predictions of the latent endogenous
variables. The method is not di±cult to implement, and its appli-
cation can be expected to be most promising when based on robust
estimates of the reduced form of the type recently developed in the
cross-sectional literature on selection models. We also show how to
obtain chi-squared speci¯cation tests and linear GMM estimators in
one more step, that are asymptotically e±cient relative to the mini-
mum distance class. The drawbacks of this approach are the same as
for Chamberlain's probit model. Namely, that it requires the avail-
ability of strictly exogenous variables, and relies on a speci¯cation of
the conditional distribution of the e®ects.

The latter assumption can be relaxed somewhat along the lines of
Newey (1994) who assumes a nonparametric conditional expectation
for the e®ects. Newey's probit model could be easily extended to in-
corporate the kind of dynamics and endogenous regressors considered
in this paper. Finally, an alternative to the random e®ects approach
spoused in this paper is to consider a ¯xed e®ects approach as in
the work of Honor¶e (1992 and 1993) and Honor¶e and Kyriazidou
(1997). The advantage of the ¯xed e®ects approach is that it leaves
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the distribution of the e®ects unrestricted, but often at the expense
of unavoidable lack of °exibility in specifying the structural model of
interest.

Appendix

Minimum distance criteria of the random e®ects LDV estimators

A minimum distance (MD) estimator bµ minimizes a criterion function of

the form

[vec
³

b¦ ¡ ¦(µ)
´
]0ª¡1vec

³
b¦ ¡ ¦(µ)

´
. [A.1]

The optimal choice for the weighting matrix ª is bV , a consistent estimate of

the asymptotic variance matrix of vec(b¦). For the static model of Section

2, µ = (¯0 ... ¸0)0 while for the dynamic speci¯cation µ = (±0 ... ¸0 ... ¹0)0.

However, the original distance function [A.1] can be considerably simpli¯ed

without e±ciency loss by using the following two properties in MD estima-

tion. Firstly, if K is a nonsingular matrix of dimension T which may or

may not depend on µ, the minimizer of the transformed criterion

h
vec(Kb¦ ¡ K¦)

i0
ª¡1

¤ vec(Kb¦ ¡ K¦) [A.2]

where ª¤ = ( eK ­ Im)ª( eK0 ­ Im) and eK is such that p lim eK = K, is

asymptotically equivalent to bµ (see for example Newey, 1987). Secondly, if

some of the coe±cients of K¦ are unrestricted they can be concentrated

out, thus obtaining a distance function which depends on a smaller set of

parameters.

For the static model let us consider the following non-singular di®erence
transformation:

D¤ =

0
BBB@

1 0 ¢ ¢ ¢ 0 0
¡1 1 ¢ ¢ ¢ 0 0
...

...
0 0 ¢ ¢ ¢ ¡1 1

1
CCCA =

µ
1 0 ¢ ¢ ¢ 0

D

¶

where D is the (T ¡ 1) £ T di®erence operator, D = I0 ¡ L. Note that

the last (T ¡ 1) rows of D¤¦ only depend on ¯ and that the ¯rst row is a
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transformation of ¸ which can be concentrated out to obtain the following

criterion for ¯

(vec(Db¦ ¡ D¦))0ª¡1
0 vec(Db¦ ¡ D¦) [A.3]

where
ª0 = (D ­ Im)ª(D0 ­ Im).

Letting H be a (T ¡ 1)m £ k 0 ¡ 1 matrix such that vec(D¦) = H¯, the

minimizer of [A.3] can be obtained as

ē =
¡
H 0ª¡1

0 H
¢¡1

H 0ª¡1
0 vec(Db¦). [A.4]

The e±cient estimator relative to b¦ sets ª = bV . However, we can now show
that the within-groups estimator b̄ given in [7] is an estimator of the form

of ē which sets ª =

µ
IT ­ P

i
ziz0

i

¶¡1

. For this choice of ª the criterion in

[A.3] becomes

h
vec(Db¦ ¡ D¦)

i0
"
(DD0)¡1 ­

X

i

ziz
0
i

#
vec(Db¦ ¡ D¦)

=
X

i

tr(b¦ ¡ ¦)0D0(DD0)¡1D(b¦ ¡ ¦)ziz
0
i

=
X

i

z0
i(b¦ ¡ ¦)0Q(b¦ ¡ ¦)zi =

X

i

¡
by+
i ¡ X+

i ¯
¢0 ¡by+

i ¡ X+
i ¯

¢

since Q = D0(DD0)¡1D and Q¦zi = X+
i ¯. Therefore b̄ can only be e±cient

with respect to b¦ if a multiple of

µ
IT ­ P

i
ziz

0
i

¶¡1

is consistent for V.

In a more explicit way, if we let E(´i j zi) = ¸0zi and let ri to be of order
p £ 1:

¦ =

µ
IT ­ ¯0 ... 0

¶
+ ¶¸0

where 0 is a T £ p matrix of zeros. Then since Q¶ = 0:

Q¦zi = Q

µ
IT ­ ¯0 ... 0

¶µ
vecXi

ri

¶
= Q (IT ­ ¯0) vecXi = QXi¯.
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Turning to the dynamic model, we consider the non-singular transformation
D¤B¤ where B¤ is given by

B¤ =

µ
1 0 ¢ ¢ ¢ 0

B

¶
.

Note that the last (T ¡ 2) rows of D¤B¤¦ only depend on ¯ and that the

¯rst two rows are transformations of ¸ and ¹ which can be concentrated

out to obtain the following criterion for ® and ¯8

h
vec(DBb¦ ¡ DB¦)

i0
ª¡1

0 vec(DBb¦ ¡ DB¦) [A.5]

where now D is the (T ¡ 2) £ (T ¡ 1) di®erence operator and

ª0 = (DB ­ Im)ª (B0D0 ­ Im) .

Letting bH be the (T ¡2)m£(k+1) matrix such that vec(®DLb¦+DB¦) =
bH± ( bH is linear in b¦), the minimizer of [A.5] can be written as

e± =
³

bH 0ª¡1
0

bH
´¡1 bH 0ª¡1

0 vec
³
DI0

b¦
´

. [A.6]

Since ª0 depends on ® through B, the calculation of the e±cient estimator
will require in general a preliminary consistent estimate of ®. However if
we choose

ª =

Ã
B¤0B¤ ­

X

i

ziz
0
i

!¡1

we obtain the within-groups estimator b± given in [20] which can be calculated
in one step. For this choice of ª the criterion [A.5] becomes

8For the dynamic model ¦ = B¤¡1¡ where ¡ =

µ
¹
..
. ¡01

¶0

and ¡1 is the (T ¡1)£m

matrix

¡1 =

µ
0
... IT¡1 ­ ¯0

... 0

¶
+ ¶¸0.
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h
vec

³
DBb¦ ¡ DB¦

´i0
"
¡
DB(B¤0B¤)¡1B0D0¢¡1 ­

X

i

ziz
0
i

#

vec(DBb¦ ¡ DB¦)

=
X

i

z0
i(B

b¦ ¡ B¦)0Q(Bb¦ ¡ B¦)zi

=
X

i

³
by+
i0 ¡ ®by+

i(¡1) ¡ X+
i ¯

´0 ³
by+
i0 ¡ ®by+

i(¡1) ¡ X+
i ¯

´

since DB(B¤0B¤)¡1B0D0 = DD0 and QB¦zi = X+
i ¯. Note that b± would

be e±cient when yit = y¤
it;

b¦ is the unrestricted OLS estimator and the uit

are white noise iid errors.
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Resumen

En este trabajo proponemos un estimador intra-grupos en dos etapas para

modelos con variable dependiente limitada, que pueden incluir retardos de

la variable dependiente, otras variables explicativas end¶ogenas y efectos in-

dividuales inobservables. Los modelos que presentamos son extensiones del

modelo probit con efectos aleatorios de Chamberlain (1984) y tienen apli-

caci¶on en el an¶alisis de elecci¶on discreta, regresi¶on lineal censurada y otros

modelos con selecci¶on end¶ogena. El estimador se basa en predicciones de

forma reducida de las variables end¶ogenas latentes. Tambi¶en mostramos

c¶omo obtener, en una etapa adicional, contrastes ji-cuadrado de las restric-

ciones de sobreidenti¯caci¶on y estimadores lineales del m¶etodo generalizado

de momentos que son asint¶oticamente e¯cientes.


